前回紹介した二分木をこちらを参考にし表示します。
サンプルコード
Nodeに新たにprintTree()を増やします。
class Node(object):
def __init__(self, value, left=None, right=None):
self.value = value
self.left = left
self.right = right
def printTree(self):
# https://stackoverflow.com/questions/48850446/how-to-print-a-binary-tree-in-as-a-structure-of-nodes-in-python
printBTree(self, lambda n: (str(n.value), n.left, n.right))
import functools as fn
# https://stackoverflow.com/questions/48850446/how-to-print-a-binary-tree-in-as-a-structure-of-nodes-in-python
def printBTree(node, nodeInfo=None, inverted=False, isTop=True):
# node value string and sub nodes
stringValue, leftNode, rightNode = nodeInfo(node)
stringValueWidth = len(stringValue)
# recurse to sub nodes to obtain line blocks on left and right
leftTextBlock = [] if not leftNode else printBTree(
leftNode, nodeInfo, inverted, False)
rightTextBlock = [] if not rightNode else printBTree(
rightNode, nodeInfo, inverted, False)
# count common and maximum number of sub node lines
commonLines = min(len(leftTextBlock), len(rightTextBlock))
subLevelLines = max(len(rightTextBlock), len(leftTextBlock))
# extend lines on shallower side to get same number of lines on both sides
leftSubLines = leftTextBlock + [""] * (subLevelLines - len(leftTextBlock))
rightSubLines = rightTextBlock + [""] * \
(subLevelLines - len(rightTextBlock))
# compute location of value or link bar for all left and right sub nodes
# * left node's value ends at line's width
# * right node's value starts after initial spaces
leftLineWidths = [len(line) for line in leftSubLines]
rightLineIndents = [len(line)-len(line.lstrip(" "))
for line in rightSubLines]
# top line value locations, will be used to determine position of current node & link bars
firstLeftWidth = (leftLineWidths + [0])[0]
firstRightIndent = (rightLineIndents + [0])[0]
# width of sub node link under node value (i.e. with slashes if any)
# aims to center link bars under the value if value is wide enough
#
# ValueLine: v vv vvvvvv vvvvv
# LinkLine: / \ / \ / \ / \
#
linkSpacing = min(stringValueWidth, 2 - stringValueWidth % 2)
leftLinkBar = 1 if leftNode else 0
rightLinkBar = 1 if rightNode else 0
minLinkWidth = leftLinkBar + linkSpacing + rightLinkBar
valueOffset = (stringValueWidth - linkSpacing) // 2
# find optimal position for right side top node
# * must allow room for link bars above and between left and right top nodes
# * must not overlap lower level nodes on any given line (allow gap of minSpacing)
# * can be offset to the left if lower subNodes of right node
# have no overlap with subNodes of left node
minSpacing = 2
rightNodePosition = fn.reduce(lambda r, i: max(r, i[0] + minSpacing + firstRightIndent - i[1]),
zip(leftLineWidths,
rightLineIndents[0:commonLines]),
firstLeftWidth + minLinkWidth)
# extend basic link bars (slashes) with underlines to reach left and right
# top nodes.
#
# vvvvv
# __/ \__
# L R
#
linkExtraWidth = max(0, rightNodePosition - firstLeftWidth - minLinkWidth)
rightLinkExtra = linkExtraWidth // 2
leftLinkExtra = linkExtraWidth - rightLinkExtra
# build value line taking into account left indent and link bar extension (on left side)
valueIndent = max(0, firstLeftWidth + leftLinkExtra +
leftLinkBar - valueOffset)
valueLine = " " * max(0, valueIndent) + stringValue
slash = "\\" if inverted else "/"
backslash = "/" if inverted else "\\"
uLine = "¯" if inverted else "_"
# build left side of link line
leftLink = "" if not leftNode else (
" " * firstLeftWidth + uLine * leftLinkExtra + slash)
# build right side of link line (includes blank spaces under top node value)
rightLinkOffset = linkSpacing + valueOffset * (1 - leftLinkBar)
rightLink = "" if not rightNode else (
" " * rightLinkOffset + backslash + uLine * rightLinkExtra)
# full link line (will be empty if there are no sub nodes)
linkLine = leftLink + rightLink
# will need to offset left side lines if right side sub nodes extend beyond left margin
# can happen if left subtree is shorter (in height) than right side subtree
leftIndentWidth = max(0, firstRightIndent - rightNodePosition)
leftIndent = " " * leftIndentWidth
indentedLeftLines = [(leftIndent if line else "") +
line for line in leftSubLines]
# compute distance between left and right sublines based on their value position
# can be negative if leading spaces need to be removed from right side
mergeOffsets = [len(line) for line in indentedLeftLines]
mergeOffsets = [leftIndentWidth + rightNodePosition -
firstRightIndent - w for w in mergeOffsets]
mergeOffsets = [p if rightSubLines[i]
else 0 for i, p in enumerate(mergeOffsets)]
# combine left and right lines using computed offsets
# * indented left sub lines
# * spaces between left and right lines
# * right sub line with extra leading blanks removed.
mergedSubLines = zip(range(len(mergeOffsets)),
mergeOffsets, indentedLeftLines)
mergedSubLines = [(i, p, line + (" " * max(0, p)))
for i, p, line in mergedSubLines]
mergedSubLines = [line + rightSubLines[i]
[max(0, -p):] for i, p, line in mergedSubLines]
# Assemble final result combining
# * node value string
# * link line (if any)
# * merged lines from left and right sub trees (if any)
treeLines = [leftIndent + valueLine] + \
([] if not linkLine else [leftIndent + linkLine]) + mergedSubLines
# invert final result if requested
treeLines = reversed(treeLines) if inverted and isTop else treeLines
# return intermediate tree lines or print final result
if isTop:
print("\n".join(treeLines))
else:
return treeLines
使い方
tree = create_tree()
tree.printTree()